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Abstract

In this thesis, the two bifurcated cylindrical waveguide problems are discussed by

using Mode-Matching technique. First problem deals with the study of a bifur-

cated cylindrical waveguide bounded by acoustically rigid boundaries along with

circular step-discontinuity whilst, in the second problem, one duct is considered

to be an elastics shell instead of rigid duct. The scattering energy flux in each

duct is calculated and then is plotted numerically by using the truncated form of

solution. It is seen that reflection and transmission of energy flux depend upon

the bounding conditions of ducts regions as well as on the structural discontinuity.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

In modern era, the noise related problems have gain much attention of researchers

and engineers. The major sources of indoor and outdoor noise pollution may occur

in heating, ventilation, and air conditioning (HVAC) systems of building, power

stations, vehicles etc. The unwanted noise generated by some source propagates

through ducts or channels. Thus, to minimize noise the absorbent material and

various designs of ducts or channels are used. The present thesis is concerned

with mathematical modeling of acoustics propagation in cylindrical duct which

contains bifurcation with co-axial cylinder. The bounding properties of guiding

structure are assumed to be acoustically rigid or elastics shell. The Mode-Matching

technique has been used to find the solution of problems discussed in the thesis.

1.2 Historical Background and Literature Review

Although acoustics waves (also known as sound waves) are nearly as old as the

existence of man on earth. The scientific study of acoustics (sound) is generally

1



Introduction and Literature Review 2

considered to have its origin in ancient Greece. During sixth century BC, the

Greek philosopher Pythagoras studied how the pitch of the string changed with

tension and the tones generated by striking. Galileo established the relationship of

pitch of a string to its vibrating length. Joseph Sauveur studied for frequency re-

lation to pitch. Marin Mersenne determined the frequency corresponding to given

pitch. Jesuit Priest Athanasius Kircher described that the air was not necessary

for the propagation of the sound. Gassendi observed that the speed of sound did

not depend on the pitch of the sound, which is contrary to Aristotle view, who

had taught that high notes are transmitted faster than low notes. The eighteenth

century begin with major development in acoustics as mathematician used the

new skills of calculus to explain theories of sound wave advancement. In the nine-

teenth century the field of mathematical acoustic widened because of Helmholtz

in Germany who elaborated the field of physiological acoustic and Lord Rayleigh

in England who accumulated and combined the previous knowledge with his own

conclusions in acoustic field in his phenomenal work “The Theory of Sound”. Also

in the nineteenth century Wheatstone, Ohm and Henry formulated the similarity

between electricity and acoustics. The twentieth century saw a lot development

of technological operations of acoustics bodies. The first application was Sabine’s

ground breaking in architectural acoustics used for detection of Submarine.

The work presented in this thesis is related the acoustic scattering problems in

bifurcated cylindrical waveguides. The study is important with reference to noise

reduction problems and has been considered by many authors, for examples see [1–

7]. Rawlins [1] considered a cylindrical bifurcation waveguide including absorbent

lining at the circular rigid and discussed the scattering of dominant wave mode.

He used Weiner-Hopf technique to find the solution of boundary value problem.

Nilsson and Brander [8–11] analyzed the propagation of sound in circular duct

with and without mean flow in the presence of bulk-reacting lining. Demir and

Buyukaksoy [2] studied the radiation of plane mode in cylindrical pipe containing

partial impedance loading surfaces. They all used Weiner-Hopf technique to solve

the problem. Hassan and Hassan et al [12–14] used Mode-Matching technique to

discuss the scattering in trifurcation and pentafurcaion waveguides. In references
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[15–24], the Mode-Matching technique to solve the boundary value problems of

non-Strum Liouville categories has been discussed. The aim of present study is to

apply the Mode-Matching technique to solve the bifurcated cylindrical waveguide

problems containing rigid and/or elastic shell type bounding wall conditions. The

work on elastic shell can be found in [25–27]. Our work on cylindrical waveguide

is organized as fellows:

In chapter-1, introduction, historical background and literature review are dis-

cussed.

In chapter-2, some basics definitions related terminologies are given.

In chapter-3, acoustic scattering in a bifurcation cylindrical waveguide containing

discontinuity in geometry is discussed.

In chapter-4, the reflection and transmission of acoustic waves in a bifurcation

waveguide connected with a shell is analyzed.

Both the boundary value problems of chapter-3 and chapter-4 are solved by using

the Mode-Matching technique.



Chapter 2

Preliminaries

2.1 Acoustics

The word acoustics is derived from the Greek word “akouein”, which means to

hear. In 1701, Sauveur was the first who used the term “acoustics” for the science

of sound. Acoustics was originally the study of small pressure/compression wave

that can be identified by human ear. But later in the range of acoustics was ex-

tended to infra sound and ultra sound as well. Now a days acoustics has become

a branch of physics that deals with the mechanical vibration without restriction

on frequency. Acoustic has many branches, for examples structure acoustic, phys-

ical acoustic, engineering acoustic, bio acoustic, environmental acoustic, musical

acoustic, architectural acoustic etc.

2.2 Acoustics Wave Equation

The propagation of acoustic waves can be discussed in term of differential equation.

The derivation of this equation is related to the properties of material medium that

can be solid, liquid and gas. Thus, the story goes back to the conservation laws;

conservation of mass, conservation of momentum, conservation of energy etc.

Here we derive the wave equation in gas like air. The form of conservation laws is

4
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non-linear in general and thus the wave equation will also be non-linear. But it is

very hard to discuss the non-linear form of wave equation. Therefore, the linear

approximation theory is used which luckly proved practical too. Here we derive

the linear form of wave equation.

2.2.1 Conservation of Mass

The conservation of mass equation is the sum of net mass flowing per unit time

to the instantaneous rate of change of mass density

∂ρ

∂t
+∇. (ρu) = 0, (2.1)

where u represents flow velocity and ρ shows instantaneous of mass density.

2.2.2 Conservation of Momentum

The conservation of momentum equation relates the net momentum flowing per

volume per unit time to the forces acting on it

∂ρu

∂t
= −∇.(ρu)u−∇p+ ρg, (2.2)

where p is pressure, g the gravitational acceleration, ∇p are exerting forces and

ρg represent the body forces.

By using equation (2.1), we can write

ρ
Du

Dt
= −∇p+ ρg, (2.3)

where
D

Dt
=

∂

∂t
+ u.∇ is known as the total derivative containing first term to be

time derivative and second term is convective term.
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2.2.3 Equation of State

The thermodynamic behaviour of compressible fluid can be defined by the equation

state. For the perfect gas, the equation of state is

p = ρrT, (2.4)

where p is pressure, T stands for temperature, and r gives specific gas constant.

For a gas enclosed in a vessel of highly thermally conductive walls, the perfect gas

isotherm can be given by
p

p0

=
ρ

ρ0

, (2.5)

where p and p0 are instantaneous and static pressure, ρ and ρ0 are instantaneous

and static density.

If no heat enter or leaves the system, then the perfect adiabatic condition is given

by
p

p0

=

(
ρ

ρ0

)γ
, (2.6)

where γ = cp/cv = Ratio of heat capacities.

The compression and rarefaction in a gas can be defined as condensation.i.e

s =
ρ− ρ0

ρ0

, (2.7)

which yield,

ρ = ρ0(1 + s). (2.8)

Using (2.8) into (2.7), we get

p

p0

= (1 + s)γ . (2.9)

Expanding the right hand side of above equation by using Taylor’s series

p

p0

= 1 + γs+
γ(γ − 1)

2!
s2 + .... (2.10)
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or
p

p0

≈ 1 + γs+O(s2). (2.11)

or
p

p0

≈ 1 + γs (linear form). (2.12)

or

p− p0 = γp0s. (2.13)

Another approach to find the adiabatic relationship between pressure and density

fluctuation is obtained by expanding the pressure p at density ρ0 using Taylor’s

series

p = p(ρ0) +
∂p

∂ρ
|ρ=ρ0 (ρ− ρ0) +

∂2p

∂ρ2
|ρ=ρ0 (ρ− ρ0) + .... (2.14)

p ≈ p0 +
∂p

∂ρ
|ρ=ρ0 (ρ− ρ0). (2.15)

or

p− p0 =
∂p

∂ρ
|ρ=ρ0 (ρ− ρ0). (2.16)

By comparing (2.13) and (2.16), we have

∂p

∂ρ
|ρ=ρ0 (ρ− ρ0) = γp0s. (2.17)

Using (2.7) into (2.17), we get

γ =
β

p0

, (2.18)

where β = ρ0
∂p

∂ρ
|ρ=ρ0 .

The acoustics pressure at any point defined by

P = p− p0. (2.19)

Also from equation (2.16), we define acoustic pressure as

P = βs. (2.20)



Preliminaries 8

2.2.4 Linearized Acoustic Wave Equation

The continuity equation (2.1) can be linearized as

∂s

∂t
+∇.u = 0. (2.21)

Here we use the acoustic density ρ = ρ0(1 + s). The Euler equation of motion of

small amplitudes pressure fluctuations is given as:

ρ0
∂u

∂t
= −∇p. (2.22)

Now by taking the divergence of (2.22),

∂

∂t
(∇.u) = − 1

ρ0

∇2p. (2.23)

On taking the derivative of (2.21) with respect to t, we have

∂

∂t
(∇.u) = −∂

2s

∂t2
. (2.24)

Form (2.23) and (2.24), we can write

∂2s

∂t2
=

1

ρ0

∇2p. (2.25)

Using (2.19),

∇2p =
1

c2

∂2p

∂t2
, (2.26)

where c2 = β/ρ0. The above equation is known as linearized wave equation.

The wave equation (2.26) can be stated in the form of scalar field potential ψ as,

∇2ψ =
1

c2

∂2ψ

∂t2
. (2.27)
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2.3 Basic Definitions

The following definitions are taken from [28] and [29].

Waveguide

“A waveguide is a structure that guides waves, such as electromagnetic waves or

sound, with minimal loss of energy by restricting expansion to one-dimensional or

two. The geometry of a waveguide represents its function. An acoustics waveguide

behave like a transmission line in which sound waves propagate.”

Amplitude

“The amplitude of vibration denotes the maximum displacement of a vibrating

body from its equilibrium position.”

Time Period

“The period of oscillation represents the time taken by the vibrating body to

complete one cycle of motion. The period of oscillation is also known as the time

period and is denoted by T .

T =
2π

ω

where ω is called the circular frequency.”

Frequency

“Frequency is defined as the number of times an event occurs per unit of time. It

can be denoted by f and can be given as

f =
1

T
(2.28)

where T is time period and f is measured in Hertz.”
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Natural Frequency

“If a system after an initial disturbance is left to vibrate on its own, the frequency

with which it oscillates without external forces is known as its natural frequency

of vibration.”

Decibel Scale

“It is customary to describe sound pressures and intensities using logarithmic scales

known as sound levels. One reason for this is the very wide range of sound pressures

and intensities encountered in the acoustic environment; audible intensities range

from approximately 10−12 to 10W/m2. Using a logarithmic scale compresses the

range of numbers required to describe this wide range of intensities and is also

consistent with the fact that humans judge the relative loudness of two sounds by

the ratio of their intensities.

The most generally used logarithmic scale for describing sound levels is the decibel

(dB) scale. The intensity level IL of a sound of intensity I is defined by

IL = 10log(I/Iref ) (2.29)

where Iref is a reference intensity, IL is expressed in decibels referenced to

Iref (dBreIref ), and log represents the logarithm to base 10.”



Chapter 3

Scattering in a Rigid Bifurcation

Cylindrical Waveguide

In this chapter, we discuss the acoustic wave propagation and scattering in a

cylindrical ducts. The bounding walls of the ducts are assumed acoustically rigid.

The eigen form of propagating modes in duct regions are determined by using

separation of variable technique. The eigenfunctions in the respective regions of

the ducts are orthogonal in nature and the boundary value problem underlies in

Strurm-Liouville category which contains well define orthogonal properties. Thus,

the use of Mode-Matching procedure, leads to the accurate solution of the problem.

The chapter is organized as follows; The description and mathematical formulation

of boundary value problem is given in Section 3.1. Mode-Matching solution is

determined in Section 3.2. The derivation for energy/power flux is discussed in

Section 3.3. The numerical results of the problem are given in the last Section 3.4.

3.1 Mathematical Formulation

Consider an infinite cylindrical waveguide comprising two semi-infinite duct section

of different radii. In dimensional cylindrical co-ordinates (r̄, θ̄, z̄), these radii are

r̄ = b̄ and r̄ = d̄, for d̄ > b̄. The left hand region z̄ < 0̄ contains bifurcation with

11
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coaxial cylinder of radius r̄ = ā, b̄ > ā, where overbar shows that the quantity is

dimensionalized. The inside of the duct is filled with compressible fluid of sound

speed c and density ρ, whereas outside of the waveguide is in “vacau”. The

geometrical configuration of the waveguide is shown in Figure (3.1).

d

Incident

ψ2

b

ψ1

ψ3

z = 0

a

z

r

Reflected

Transmitted

Figure 3.1: Non-dimensional geometry of the waveguide.

Consider an incident wave of harmonic time dependence e−iωt̄, where ω = ck

is angular velocity, with k being the fluid wavenumber, is propagating from the

negative z̄-direction towards z̄=0. At z̄=0, it will scattered into infinite number

of modes. Some of modes reflected back in the central and annular region and

some of them are transmitted. The acoustics waves propagating inside the duct is

governed by the Helmholtz’s equation

{
∂2

∂r̄2
+

1

r̄

∂

∂r̄
+

∂2

∂z̄2
+ k2

}
ψ̄ = 0, (3.1)

where ψ̄ is the dimensional fluid velocity potential.

The dimensional variables are non-dimensionlize with respect to length scale k−1
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and time scale ω−1 under transformations:

kr̄ = r, kz̄ = z, k2ψ̄ = ωψ. (3.2)

Thus, the dimensionless form of (3.1) becomes

{
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+ 1

}
ψ = 0, (3.3)

where ψ denotes the dimensionless velocity potential in the duct sections and is

given by

ψ(r, z) =


ψ1(r, z) z < 0, 0 ≤ r ≤ a

ψ2(r, z) z > 0, 0 ≤ r ≤ d.

ψ3(r, z) z < 0, a ≤ r ≤ b

(3.4)

The non-dimensional rigid boundaries are defined as

∂ψ1

∂r
(a, z) = 0, z < 0, (3.5)

∂ψ2

∂r
(d, z) = 0, z > 0, (3.6)

∂ψ3

∂r
(a, z) = 0, z < 0 (3.7)

and
∂ψ3

∂r
(b, z) = 0, z < 0. (3.8)

At interface z = 0, the pressure is continuous that is

ψ1(r, 0) = ψ2(r, 0), 0 ≤ r ≤ a (3.9)

and

ψ3(r, 0) = ψ2(r, 0), a ≤ r ≤ b. (3.10)
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Also at interface the normal velocities across the region is continuous, that is

∂ψ2

∂z
(r, 0) =



∂ψ1

∂z
(r, 0) 0 ≤ r ≤ a

∂ψ3

∂z
(r, 0) a ≤ r ≤ b.

0 b ≤ r ≤ d

(3.11)

The boundary value problem defined by (3.1)-(3.11) is solved by Mode-Matching

technique which is discussed in next section.

3.2 Mode-Matching Solution

In order to find the solution, we consider a fundamental duct mode incident ψinc

from negative z-direction in central cylindrical duct. At z = 0, it scatters into

infinite reflected and transmitted modes. Thus, the field potential in central region

is sum of incident and reflected fields, i.e,

ψ1(r, z) = ψinc + ψref ,

where ψref denotes explicitly the superposition of infinite reflected duct modes

ψ1n, n = 0, 1, 2.... Thus, we may write

ψ1 =
∞∑
n=o

Anψ1n(r, z),

where An are the amplitudes of reflected duct modes. The eigen expansion form

of transmitted duct is assumed as:

ψ2 =
∞∑
n=0

Bnψ2n(r, z),
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where Bn are amplitudes and ψ2n(r, z) contains shape of transmitted modes. Simi-

larly, the eigen expansion form of reflected duct modes ψ3n, n = 0, 1, 2... is assumed

as

ψ3(r, z) =
∞∑
n=0

Cnψ3n(r, z),

where Cn are reflected modes amplitudes. In order to calculate the velocity po-

tential, we use separation of variable method. For this we let

ψ1(r, z) = R1(r)Z1(z). (3.12)

By substituting (3.12) into (3.3) and then divided by R1Z1, we get

R
′′
1

R1

+
1

r

R
′
1

R1

+ 1 = −Z
′′
1

Z1

= η2 (say), (3.13)

where prime denotes the differentiation with respect to variable involved. From

(3.13), we write
R
′′
1

R1

+
1

r

R
′
1

R1

+ 1 = η2 (3.14)

and

− Z
′′
1

Z1

= η2. (3.15)

The solution of (3.15) is

Z1 = c1e
iηz + c2e

−iηz,

where c1 and c2 are arbitrary constants. Note that the exponential terms e−iηz

and eiηz show the propagating mode towards negative and positive z-directions,

respectively. To find R(r), we multiplying (3.14) with r2R(r) to get

r2R
′′

1 + rR′1 + r2(1− η2)R1 = 0, (3.16)

which is Bessel differential equation. The general solution of Bessel equation is

R1(r) = c3J0(τr) + c4Y0(τr), (3.17)
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where c3 and c4 are arbitrary constants. Here J0(τr) is a Bessel function of first

kind and Y0(τr) is of Bessel second kind respectively, where τ = (1− η2)1/2. But

as r → 0, the Bessel function of second kind becomes undefined, therefore we must

choose c4 = 0 for bounded solution, thus (3.17) becomes

R1(r) = c3J0(τr). (3.18)

On using (3.18) into (3.5), we get

J
′

0(τa) = 0, (3.19)

for non-trivial solution. There are infinite many values of τ for which (3.19) holds.

These values are known as the eigenvalues represented by τn, n = 0, 1, 2, .... The

corresponding eigenfunctions are

R1n = J0(τnr), n = 0, 1, 2.... (3.20)

Hence, the nth mode propagation can be given as

ψ1n(r, z) = J0(τnr)e
−iηnz. (3.21)

The eigenfunctions defined in (3.20) are orthogonal in nature. To develop orthog-

onality relation for eigen function τn, we rewrite (3.16) and (3.19) as

R
′′

1n(r) +
1

r
R′1n(r) = −τ 2

nR1n(r), (3.22)

R
′

1n(a) = 0, (3.23)

On multiplying (3.23) with aR1m(a), we have

aR
′

1n(a)R1m(a) = 0. (3.24)
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By interchanging n by m, we found

aR
′

1m(a)R1n(a) = 0. (3.25)

On subtracting (3.24) from (3.25), we get

a
[
R
′

1m(a)R1n(a)−R′1n(a)R1m(a)
]

= 0,

which yields, [
r
{
R
′

1m(r)R1n(r)−R′1n(r)R1m(r)
}]a

r=0
= 0. (3.26)

By differentiating it with respect to r, the integral form of (3.26) can be expressed

as: ∫ a

0

d

dr

[
r
{
R
′

1m(r)R1n(r)−R′1n(r)R1m(r)
}]

dr = 0,

which on simplification leads to,

∫ a

0

[
rR1n(r)

{
R
′′

1m(r) +
1

r
R
′

1m(r)

}
− rR1m(r)

{
R
′′

1n(r) +
1

r
R
′

1n(r)

}]
dr = 0.

By using (3.22), we conclude

(τ 2
n − τ 2

m)

∫ a

0

R1m(r)R1n(r)rdr = 0. (3.27)

If (τ 2
n − τ 2

m) 6= 0 , (3.27) leads to

∫ a

0

R1m(r)R1n(r)rdr = 0. (3.28)

If τ 2
n − τ 2

m = 0, (m = n), then integral takes the form

∫ a

0

R1m(r)R1n(r)rdr = Fn, (3.29)

where

Fn =
a2

2
J2

0 (τna).
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On combining (3.28) and (3.29), we found

∫ a

0

R1m(r)R1n(r)rdr = δmnFn, (3.30)

where δmn is Kronecker delta. Likewise in region 0 ≤ r ≤ b, z > 0, the separation

of variable technique yields the eigenvalues to be roots of the dispersion relation

J
′

0(ξnb) = 0.

The corresponding eigenfunctions are

R2n = J0(ξnr), n = 0, 1, 2, ....

Thus, the propagating nth mode in this region takes the form

ψ2n = J0(ξnr)e
iλnz,

where λn = (1 − ξ2
n)1/2. Note that, the eigenfunction R2n are orthogonal in na-

ture. The orthogonality relation in this region can be derived in similar fashion as

discussed for R1n. Thus the resulting orthogonality relation is found to be

∫ b

0

R2m(r)R2n(r)rdr = δmnDn (3.31)

and

Dn =
b2

2
J2

0 (ξnb).

Now we determine the eigenfunctions in annular cylindrical region. In this region

the separation of variable technique leads to

ψ3n = R3n(r)e−isnz,

where sn = (1− γ2
n)1/2 and

R3n(r) = c5J0(γnr) + c6Y0(γnr). (3.32)
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To determine c5 and c6 the rigid boundary conditions (3.7) and (3.8) can be written

as

R
′

3n(a) = 0, (3.33)

R
′

3n(b) = 0. (3.34)

By using (3.32) and (3.33), the eigen function R3n takes the form

R3n(r) =
c5

Y
′

0 (γna)

[
J0(γnr)Y

′

0 (γna)− J ′0(γna)Y0(γnr)
]
, (3.35)

where c6 =
c5J

′
0(γnr)

Y
′

0 (γna)
.

On using (3.35) into (3.34), we get that γn are the roots of following dispersion

relation

J
′

0(γnb)Y
′

0 (γna)− J ′0(γna)Y
′

0 (γnb) = 0.

Note that the eigenfunctions R3n are orthogonal in nature. To determine their

orthogonality relation we rewriting (3.16), (3.33) and (3.34) as

R
′′

3n(r) +
1

r
R′3n(r) = −γ2

nR3n(r), (3.36)

R
′

3n(a) = 0, (3.37)

R
′

3n(b) = 0, (3.38)

where γn = (1− s2
n)1/2. On multiplying (3.37) with aR3m(a),

aR
′

3n(a)R3m(a) = 0. (3.39)

By interchanging n by m, we found

aR
′

3m(a)R3n(a) = 0. (3.40)
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By subtracting (3.39) from (3.40), we get

a
[
R
′

3m(a)R3n(a)−R′3n(a)R3m(a)
]

= 0. (3.41)

On multiplying (3.38) with bR3m(b) it is found that,

bR
′

3n(b)R3m(b) = 0, (3.42)

which on interchanging n by m, yields

bR
′

3m(b)R3n(b) = 0. (3.43)

On subtracting (3.42) from (3.43), we found

b
[
R
′

3m(b)R3n(b)−R′3n(b)R3m(b)
]

= 0. (3.44)

From (3.41) and (3.44), we have

b
[
R
′

3m(b)R3n(b)−R′3n(b)R3m(b)
]
− a

[
R
′

3m(a)R3n(a)−R′3n(a)R3m(a)
]

= 0,

which follows [
r
{
R
′

3m(r)R3n(r)−R′3n(r)R3m(r)
}]r=b

r=a
= 0,

or ∫ b

a

d

dr

[
r
{
R
′

3m(r)R3n(r)−R′3n(r)R3m(r)
}]

dr = 0. (3.45)

The simplification of (3.45) leads to

∫ b

a

[
rR3n(r)

{
R
′′

3m(r) +
1

r
R
′

3m(r)

}
− rR3m(r)

{
R
′′

3n(r) +
1

r
R
′

3n(r)

}]
dr = 0.

On using (3.36), we get

(γ2
n − γ2

m)

∫ b

a

R3m(r)R3n(r)rdr = 0. (3.46)
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If γ2
n − γ2

m 6= 0, (3.46) leads to

∫ b

a

R3m(r)R3n(r)rdr = 0. (3.47)

If γ2
n − γ2

m = 0, (m = n), then integral takes the form

∫ b

a

R3m(r)R3n(r)rdr = En, (3.48)

where

En =
1

2

[
b2
{(
J2

0 (bγn) + J2
1 (bγn)

)
− 2J1(aγn)Y1(aγn)

(
J0(bγn)Y0(bγn)

+ J1(bγn)Y1(bγn)
)

+ J2
1 (aγn)

(
Y 2

0 (bγn) + Y 2
1 (bγn)

)}
− 4

π2γn

]
.

Now combining (3.47) and (3.48), we found

∫ b

a

R3m(r)R3n(r)rdr = δmnEn. (3.49)

where δmn is Kronecker delta. Now it is convenient to write the eigen expansion

form of field potential in three duct regions : that are

ψ1(r, z) = eiz +
∞∑
n=0

AnJ0(τnr)e
−iηnz, (3.50)

ψ2(r, z) =
∞∑
n=0

BnJ0(ξnr)e
iλnz, (3.51)

ψ3(r, z) =
∞∑
n=0

CnR3n(r)e−isnz. (3.52)

Note that the first term in (3.50) which is a fundamental duct mode stands for

incident field while the second term comprises as reflected field.

In (3.50)-(3.52) the scattering amplitudes {An, Bn, Cn} are unknowns. These are

found by matching conditions. For this we substituted (3.50) and (3.51) into
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pressure condition (3.9) to get,

1 +
∞∑
n=0

AnJ0(τnr) =
∞∑
n=0

BnJ0(ξnr). (3.53)

After multiplying the above equation (3.53) with J0(τmr)r and integrating the

resultant, we get

∫ a

0

J0(τmr)rdr +
∞∑
n=0

An

∫ a

0

J0(τmr)J0(τnr)rdr =
∞∑
n=0

Bn

∫ a

0

J0(τmr)J0(ξnr)rdr.

(3.54)

On using the orthogonality relation (3.30) in (3.54), it is found that

Am = −δm0 +
1

Fm

∞∑
n=0

BnQmn, (3.55)

where

Qmn =

∫ a

o

J0(τmr)J0(γnr)rdr. (3.56)

For τm 6= ξn , Qmn simplifies to

Qmn =
a {τmJ1(τma)J0(ξna)− ξmJ1(ξma)J0(τma)}

τ 2
m − ξ2

n

.

When τm = ξn, (m = n), it fellows

Qmm =
a2J2

0 (τma)

2
.

Similarly on using the scattered fields (3.51) and (3.52) into the normal pressure

condition (3.10), we have

∞∑
n=0

CnR3n(r) =
∞∑
n=0

BnJ0(ξnr). (3.57)

On multiplying (3.57) by R3m(r)r and integrating the resultant with respect to r,

a ≤ r ≤ b, we found

∞∑
n=0

Cn

∫ b

a

R3m(r)R3n(r)rdr =
∞∑
n=0

Bn

∫ b

a

R3m(r)J0(ξnr)rdr. (3.58)
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On using the orthogonality relation (3.49) in (3.58), we get

Cm =
1

Em

∞∑
n=0

BnPmn, (3.59)

where

Pmn =

∫ b

a

R3m(r)J0(ξnr)rdr. (3.60)

After simplification, we get

Pmn =
1

ξ2
n − γ2

m

[
ξn

{
bJ1(bξn)

(
− J1(aγm)Y0(bγm) + J0(bγm)Y1(aγm)

)
+

2J1(aξn)

πγm

}
+ bJ0(bξn)γm

(
− J1(bγm)Y1(aγm) + J1(aγm)Y1(bγm)

)]
.

Finally, we use (3.50), (3.51) and (3.52) in the velocity condition (3.11), to get

∞∑
n=0

BnλnJ0(ξnr) =


1−

∞∑
n=0

AnηnJ0(τnr) 0 ≤ r ≤ a

−
∞∑
n=0

CnsnR3n a ≤ r ≤ b.

(3.61)

By multiplying (3.61) with J0(ξmr)r and integrating the resultant, we get

∞∑
n=0

Bnλn

∫ d

0

J0(ξnr)J0(ξmr)rdr =

∫ a

0

J0(ξmr)rdr −
∞∑
n=0

Anηn

∫ a

0

J0(ξmr)J0(τnr)rdr

−
∞∑
n=0

Cnsn

∫ b

a

J0(ξmr)R3n(r)rdr.

By substituting (3.56), (3.60) and the orthogonality relation (3.31), we have

Bm =
Qm0

λmDm

− 1

λmDm

∞∑
n=0

AnηnQnm −
1

λmDm

∞∑
n=0

CnsnPnm, (3.62)

where

Qnm =

∫ a

0

J0(ξmr)J0(τnr)rdr

and

Pnm =

∫ b

a

J0(ξmr)R3n(r)rdr.
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In this way the equations (3.55), (3.59) and (3.62) yield a system of equations

in which Am, Bm and Cm are unknowns. These are truncated upto m = n =

0, 1, 2...N terms and solved the equations simultaneously.

3.3 Energy Flux/Power

Here we determine the energy flux in different duct region and then construct the

conserved power identity. The non-dimensional form of energy flux can be written

as

Energy flux = Re

[∫
Ω

iψ

(
∂ψ

∂z

)∗
rdr

]
, (3.63)

where (∗) is the complex conjugate.

To define the incident energy flux, we use incident field ψinc = eiz into (3.63), we

get

Incident energy flux = Re

[
i

∫ a

0

eiz(−ie−iz)rdr
]
,

εinc =
a2

2
.

Likewise we determinant, the reflection in energy in the central region 0 ≤ r ≤ a,

we write the reflected field as:

ψr =
∞∑
n=0

AnJ0(τnr)e
−iηnz. (3.64)

On using (3.64) and (3.63), we get

Reflected energy flux in region R1

= Re

[
i

∫ a

0

(
∞∑
n=0

AnJ0(τnr)e
−iηnz

)(
∞∑
m=0

AmJ0(τmr) (−iηm) e−iηmz

)∗
rdr

]
,

= −Re

[
∞∑
n=0

∞∑
m=0

AnA
∗
me
−i(ηn−η∗m)η∗m

∫ a

0

J0(τnr)J
∗
0 (τmr)rdr

]
.
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Note that as τn are roots of (3.19) which are real values implies J∗0 (τmr) = J0(τmr),

therefore

Reflected energy flux in region R1

= −Re

[
∞∑
n=0

∞∑
m=0

AnA
∗
me
−i(ηn−η∗m)η∗m

∫ a

0

J0(τnr)J0(τmr)rdr

]
.

On using orthogonality relation (3.30), we get

Reflected energy flux in region R1 = −Re

[
∞∑
n=0

∞∑
m=0

AnA
∗
me
−i(ηn−η∗m)η∗mFnδmn

]
,

= −Re

[
∞∑
n=0

| An |2 η∗ne−i(ηn−η
∗
n)Fn

]
.

Since ηn = (1− τn)1/2 is either real or imaginary, thus for real values

Reflected energy flux in region R1 = −Re

[
∞∑
n=0

| An |2 ηnFn

]
.

Now we determinant, the reflection in energy in region a ≤ r ≤ b, we write the

reflected field as:

ψr =
∞∑
n=0

CnR3n(r)e−isnz. (3.65)

On using (3.65) and (3.63), we get

Reflected energy flux in region R3

= Re

[
i

∫ b

a

(
∞∑
n=0

CnR3n(r)e−isnz

)(
∞∑
m=0

CmR3m(r) (−ism) e−ismz

)∗
rdr

]
,

= −Re

[
∞∑
n=0

∞∑
m=0

CnC
∗
me
−i(sn−s∗m)s∗m

∫ b

a

R3n(r)R∗3m(r)rdr

]
.
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Note that as sn are roots which are real values implies R∗3m(r) = R3m(r), therefore

Reflected energy flux in region R3

= −Re

[
∞∑
n=0

∞∑
m=0

CnC
∗
me
−i(sn−s∗m)s∗m

∫ b

a

R3n(r)R3m(r)rdr

]
.

On using orthogonality relation (3.49), we get

Reflected energy flux in region R3 = −Re

[
∞∑
n=0

∞∑
m=0

CnC
∗
me
−i(sn−s∗m)s∗mEnδmn

]
,

= −Re

[
∞∑
n=0

| Cn |2 s∗ne−i(sn−s
∗
n)En

]
.

Since sn = (1− γn)1/2 is either real or imaginary, thus for real values

Reflected energy flux in region R3 = −Re

[
∞∑
n=0

| Cn |2 snEn

]
.

Note that the negative sign on right hand side denotes the energy propagation in

negative direction. Similarly for the energy transmission in region 0 ≤ r ≤ d, we

write the transmitted field as:

ψt =
∞∑
n=0

BnJ0(ξnr)e
iλnz. (3.66)

On using (3.66) and (3.63), we get

Reflected energy flux in region R2

= Re

[
i

∫ d

0

(
∞∑
n=0

BnJ0(ξnr)e
iλnz

)(
∞∑
m=0

BmJ0(ξmr) (iλm) eiλmz

)∗
rdr

]
,

= Re

[
∞∑
n=0

∞∑
m=0

BnB
∗
me

i(λn−λ∗m)λ∗m

∫ d

0

J0(ξnr)J
∗
0 (ξmr)rdr

]
.
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Note that as ξn are roots which are real values implies J∗0 (ξmr) = J0(ξmr), therefore

Reflected energy flux in region R2

= Re

[
∞∑
n=0

∞∑
m=0

BnB
∗
me

i(λn−λ∗m)λ∗m

∫ d

0

J0(ξnr)J0(ξmr)rdr

]
.

On using orthogonality relation (3.31), we get

Reflected energy flux in region R2 = Re

[
∞∑
n=0

∞∑
m=0

BnB
∗
me

i(λn−λ∗m)λ∗mDnδmn

]
,

= Re

[
∞∑
n=0

| Bn |2 λ∗nei(λn−λ
∗
n)Dn

]
.

Since λn = (1− ξn)1/2 is either real or imaginary, thus for real values

Reflected energy flux in region R2 = Re

[
∞∑
n=0

| Bn |2 λnDn

]
.

From conversation of energy

Left hand energy flux = Right hand energy flux.

a2

2
− Re

[
∞∑
n=0

| An |2 ηnFn

]
− Re

[
∞∑
n=0

| Cn |2 snEn

]
= Re

[
∞∑
n=0

| Bn |2 λnDn

]
.

(3.67)

To scale the incident power at unity we multiplying (3.67) by
2

a2
, after some

manipulations we get

1 = E1 + E2 + E3, (3.68)

which is conserved energy equation, where

E1 =
2

a2
Re

[
∞∑
n=0

| An |2 ηnFn

]
,

E2 =
2

a2
Re

[
∞∑
n=0

| Bn |2 λnDn

]
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and

E3 =
2

a2
Re

[
∞∑
n=0

| Cn |2 snEn

]
.

3.4 Numerical Solution

In this section the physical problem is solved numerically after truncation of (3.55) ,

(3.59) and (3.62) upto n = 0, 1, 2, ...N terms. Here the system is truncated upto N

terms. The reduced system contains, N + 1 algebraic equations which are solved

simultaneously to find the unknown coefficients (An, Bn, Cn), n = 0, 1, 2, ..., N

terms. The numerical computation are performed in MATHEMATICA using

built-in commands. The power distribution in duct regions plotted against the fre-

quency. While carrying the parametric investigation, the physical parameters are

chosen as; the speed of sound in air c = 343ms−1 density of air ρ = 1.2043kgm−3

and the dimensional ducts heights ā = 0.3m , b̄ = 2m and d̄ = 2.5m. We re-

construct our matching conditions at matching interface to validate the truncated

solution. The real and imaginary part of non-dimensional pressures and velocities

at matching interface are shown in Figures 3.2-3.5. From these figures, It can

be seen that the real and imaginary parts of pressures curves across the regions

coincide exactly at matching interface as considered in equations (3.9) and (3.10).

Likewise in Figures 3.6-3.7 the real and imaginary parts of velocities coincide at ap-

paratus whereas the real and imaginary parts of ψ2z becomes zero when b ≤ r ≤ d.

This is exactly that we considered in equation (3.11). In this way the matching

conditions confirm the accuracy of performed algebra as well as the truncated so-

lution.
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Figure 3.2: Real parts of pressures ψ1(r, 0) and ψ2(r, 0) plotted against r.
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Figure 3.3: Imaginary parts of pressures ψ1(r, 0) and ψ2(r, 0) plotted against r.
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Figure 3.4: Real parts of pressures ψ2(r, 0) and ψ3(r, 0) plotted against r.
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Figure 3.5: Imaginary parts of pressures ψ2(r, 0) and ψ3(r, 0) plotted against r.
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Figure 3.6: Real parts of velocities ψ1z(r, 0), ψ2z(r, 0) and ψ3z(r, 0) plotted
against r.
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Figure 3.7: Imaginary parts of velocities ψ1z(r, 0), ψ2z(r, 0) and ψ3z(r, 0) plotted
against r
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Furthermore, the accuracy of truncated solution can be confirmed through energy

flux identity. The power components against frequency are plotted in Figures 3.8-

3.9 for circular regions of radii ā = 0.3m , b̄ = 2m and d̄ = 2.5m. The roots of

involving parameters remain invariant as discussed in the start of this section.

Note that in Figure 3.8 the step-discontinuity is assumed. For the dispersion of

energy flux, we plot the reflected and transmitted energy flux against frequency.

Moreover, the sum of the scattering power propagation in different regions is unity

which justifies the conserved power identity (3.68). In this way the confirmation

of matching conditions and conserved power identity validation the truncated so-

lution.

The physical behavior depicted in Figure 3.8, shows that the reflected power in

region R1 increases continuously in frequency regime 1Hz ≤ f ≤ 276Hz. After

that, it goes on decreasing and start fluctuating to reaches its minimum for higher

frequencies. When the reflected power goes on decreasing then the transmitted

power goes on increasing. So that, the reflected and transmitted powers are con-

verse to each other.

In Figure 3.9 the step-discontinuity is removed by taking b = d, when an funda-

mental mode becomes propagating then both the reflected and transmitted powers

behave smoothly in frequency regime 1Hz ≤ f ≤ 346Hz. After that, the reflected

power goes on decreasing and at the same time transmitted power goes on in-

creasing fluctuating to reach its minimum and maximum for higher frequencies.

The power components against frequency plotted in Figures 3.10-3.11 for circular

regions ā = 0.5m, b̄ = 0.25m and d̄ = 3m. In Figure 3.10 the step-discontinuity is

assumed. Furthermore in Figures 3.12−3.13 the dimensions are fixed as ā = 0.8m,

b̄ = 0.3m and d̄ = 3.5m.
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Figure 3.8: Scattered energy flux (εj) in regions Rj verses frequency for rigid
bounding walls with d̄ > b̄, where ā = 0.3m, b̄ = 2m, d̄ = 2.5m and N = 20.
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Figure 3.9: Scattered energy in regions Rj−εj verses frequency for rigid bound-
ing walls with b̄ = d̄, where ā = 0.3m, b̄ = 2m, d̄ = 2m and N = 20.
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Figure 3.10: Scattered energy flux (εj) in regions Rj verses frequency for rigid
bounding walls with d̄ > b̄, where ā = 0.5m, b̄ = 2.5m, d̄ = 3m and N = 20.
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Figure 3.11: Scattered energy in regions Rj − εj verses frequency for rigid
bounding walls with b̄ = d̄, where ā = 0.5m, b̄ = 2.5m, d̄ = 2.5m and N = 20.
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Figure 3.12: Scattered energy in regions Rj − εj verses frequency for rigid
bounding walls with d̄ > b̄, where ā = 0.8m, b̄ = 3m, d̄ = 3.5m and N = 20.
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Figure 3.13: Scattered energy in regions Rj − εj verses frequency for rigid
bounding walls with b̄ = d̄, where ā = 0.8m, b̄ = 3m, d̄ = 3m and N = 20.
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From scattered energy in different regions it can be seen that on increasing the

height of step-discontinuity, the reflected power increases whereas transmitted

power decreases, while the power balanced is achieved successfully.



Chapter 4

Scattering in Flexible Bifurcated

Cylindrical Waveguide

In this chapter, we consider a bifurcated waveguide whose right hand duct is an

elastics shell while the rest of the problem remains same as discussed in Chapter-3.

The governing equations for left hand regions remain same as given in Chapter-3

whilst for right duct we use Donnell-Mushtari equations of motion as stated by

Junger and Feit [25] to describe the dynamics of boundaries. The generalised

orthogonality relation developed by Lawrie and Pullen [27] for the elastic shell is

used to recaust the differential system into linear algebraic system.

This chapter is arranged as fellows: The mathematical formulation and Mode-

Matching solution are given in Sections 4.1 and 4.2, the energy flux/power is

discussed in Section 4.3 and the numerical results of the problem is given in Section

4.4.

4.1 Mathematical Formulation

Consider an infinite cylindrical waveguide comprising two semi-infinite duct sec-

tion of different radii. In dimensional cylindrical co-ordinates (r̄, θ̄, z̄), these radii

are r̄ = b̄ and r̄ = d̄, for d̄ > b̄. The left hand region z̄ < 0̄ contains bifurcation

37
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with coaxial cylinder of radius r̄ = ā, b̄ > ā, where overbar shows the quantity is

dimensionalized. The inside of the duct is filled with compressible fluid of sound

speed c and density ρ, whereas outside of the waveguide is in “vacau”. The geo-

metrical configuration of the waveguide is shown in Figure (4.1).

Figure 4.1: Non-dimensional geometry of waveguide.

Considered an incident wave of harmonic time dependence e−iωt̄, where ω = ck

is annular velocity , with k being the fluid wavenumber, is propagating from the

negative z̄-direction towards z̄=0. At z̄=0, it will scattered into infinite number

of modes. Some of modes reflected back in the central and annular region and

some of them are transmitted. The acoustics waves propagating inside the duct is

governed by the Helmholtz’s equation

{
∂2

∂r̄2
+

1

r̄

∂

∂r̄
+

∂2

∂z̄2
+ k2

}
ψ̄ = 0,

where ψ̄ is the dimensional field velocity potential.

To describe the motion of a flexible shell, we use the Donnell-Mushtari equations

of motion derived by taking the assumption of small displacements as compared

to the thickness of shell [27]. “The Donnell-Mushtari equations of motion for a
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cylindrical shell of radius d̄ are:

∂2ū

∂z̄2
+

1− ν
2d̄2

∂2ū

∂θ2
+

1 + ν

2d̄

∂2v̄

∂z̄∂θ
+
ν

d̄

∂w̄

∂z̄
+
ω2ū

c2
s

= 0, at r̄ = d̄,

1 + ν

2d̄

∂2ū

∂z̄∂θ
+

1− ν
2

∂2v̄

∂z̄2
+

1

d̄2

∂2v̄

∂θ2
+

1

d̄2

∂w̄

∂θ
+
ω2v̄

c2
s

= 0, at r̄ = d̄,

ν

d̄

∂ū

∂z̄
+

1

d̄2

∂v̄

∂θ
+
w̄

d̄2
+
h2

12

∂4w̄

∂z̄4
+

2h2

12d̄2

∂4w̄

∂z̄2∂θ2
+

h2

12d̄4

∂4w̄

∂θ4
−ω

2w̄

c2
s

− p̄(d̄, z̄)

c2
sρsh

= 0, at r̄ = d̄.”

where ū, v̄ and w̄ are corresponding the longitudinal, circumferential and radial

midsurface shell displacements respectively, ν is Poisson’s ratio, p̄(d̄, z̄) is the in-

ternal fluid pressure acting on the shell and cs is the in “vacuo” sound speed in

the shell given by

cs =

[
E

(1− ν2)ρs

]1/2

,

where E is Young’s modulus. For axisymmetric motion all θ-dependent displace-

ments can be neglected, which reduces the equations of motion to

∂2ū

∂z̄2
+
ν

d̄

∂w̄

∂z̄
+
ω2ū

c2
s

= 0, at r̄ = d̄,

1− ν
2

∂2v̄

∂z̄2
+
ω2v̄

c2
s

= 0, at r̄ = d̄,

ν

d̄

∂ū

∂z̄
+
w̄

d̄2
+
h2

12

∂4w̄

∂z̄4
− ω2w̄

c2
s

− p̄(d̄, z̄)

c2
sρsh

= 0, at r̄ = d̄.

The pressure p̄ and the shell displacement ω̄ can be expressed in terms of the

velocity potential ψ̄ as fellows:

p̄ = iωρψ̄, (4.1)

w̄ =
i

ω

∂ψ̄

∂r̄
. (4.2)

On using the above relations given in (4.1) and (4.2), we get

∂2ū

∂z̄2
+
iν

ωd̄

∂2ψ̄

∂z̄∂r̄
+
ω2ū

c2
s

= 0, at r̄ = d̄
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and
ν

d̄

∂ū

∂z̄
+

i

d̄2ω

∂ψ̄

∂r̄
+
ih2

12ω

∂5ψ̄

∂z̄4∂r̄
− iω

c2
s

∂ψ̄

∂r̄
− iωρψ̄

c2
sρsh

= 0, at r̄ = d̄.

The dimensional variables can be non-dimensionalized with respect to typical time

scale ω−1 and length scale k−1 under transformations:

kr̄ = r, kz̄ = z, k2ψ̄ = ωψ. (4.3)

With the help of above transformation, we define the non-dimensionalized

Helmholtz equation as fellow:

{
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+ 1

}
ψ = 0, (4.4)

where ψ is the dimensionaless field velocity potential which can be define in three

duct sections as

ψ(r, z) =


ψ1(r, z) z < 0, 0 ≤ r ≤ a

ψ2(r, z) z > 0, 0 ≤ r ≤ d.

ψ3(r, z) z < 0, a ≤ r ≤ b

The non-dimensional rigid boundary can be defined as

∂ψ1

∂r
(a, z) = 0, z < 0.

The dimensionaless Donnell-Mushtari equations of motion are as fellows:

∂2u

∂z2
+
iν

d

∂2ψ2

∂r∂z
+ β2u = 0, at r = d, (4.5)

1− ν
2

∂2v

∂z2
+ β2v = 0, at r = d, (4.6)

−iνd∂u
∂z

+
∂ψ2

∂r
+

1

Γ

∂5ψ2

∂r∂z4
− d2β2∂ψ2

∂r
− d2β2ρ

ρshk
ψ2 = 0, at r = d, (4.7)

where β = ω/(csk) and Γ = 12/(k2h2d2).

Additionally, we improve conditions to define the properties of connections of
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shell with rigid ring. It can be clamped or pin-jointed etc. Here only clamped

connection is assumed. For a shell that is clamped, the conditions are

ū = ω̄ =
∂ω̄

∂z̄
= 0, at z̄ = 0 and r̄ = d̄.

These edge conditions are non-dimensionalised by using variables given in (4.3),

u =
∂ψ2

∂r
=
∂2ψ2

∂r∂z
= 0, at z = 0 and r = d. (4.8)

The rigid boundary condition for velocity potential ψ2 is defined as

∂ψ2

∂r
(d, z) = 0, z > 0.

For the velocity potential ψ3 the boundaries conditions are

∂ψ3

∂r
(a, z) = 0, z < 0,

∂ψ3

∂r
(b, z) = 0, z < 0.

At interface z = 0, the pressure is continuous that is

ψ1(r, 0) = ψ2(r, 0), 0 ≤ r ≤ a, (4.9)

ψ3(r, 0) = ψ2(r, 0), a ≤ r ≤ b. (4.10)

Also at interface the normal velocities across the region is continuous, that is

∂ψ2

∂z
(r, 0) =



∂ψ1

∂z
(r, 0) 0 ≤ r ≤ a

∂ψ3

∂z
(r, 0) a ≤ r ≤ b.

0 b ≤ r ≤ d

(4.11)
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The boundary value problem is solved by using the Mode-Matching technique

which is discussed in the next section.

4.2 Mode-Matchng Solution

Consider a fundamental duct mode incident from negative z-direction in central

cylindrical duct. At z = 0, it disperse into infinite modes in which some are

reflected and some are transmitted. The formulation of eigen functions and eigen

values of scattering modes in left hand regions remain same as discussed in previous

Chapter-3, but the eigenfunctions and corresponding eigenvalues are different in

right hand duct region. These can be found by using separation of variable method.

For this we let

ψ2(r, z) = R2(r)Z2(z). (4.12)

By substituting (4.12) into (4.4) and then divided by R2Z2, we get

R
′′
2

R2

+
1

r

R
′
2

R2

+ 1 = −Z
′′
2

Z2

= λ2 (say), (4.13)

where prime denotes the differentiation with respect to variable involved. From

(4.13), we write
R
′′
2

R2

+
1

r

R
′
2

R2

+ 1 = λ2 (4.14)

and

− Z
′′
2

Z2

= λ2. (4.15)

The solution of (4.15) is

Z2 = c7e
iλz + c8e

−iλz,

where c7 and c8 are arbitrary constants. Note that the exponential terms e−iλz

and eiλz show the propagating mode towards negative and positive z-directions,

respectively. To find R(r), we multiplying (4.14) with r2R(r) to get

r2R
′′

2 + rR′2 + r2(1− λ2)R2 = 0,
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which is Bessel differential equation having solution

R2(r) = c9J0(ξr) + c10Y0(ξr), (4.16)

where c9 and c10 are arbitrary constants. Here J0(ξr) and Y0(ξr) are Bessel func-

tion of first and second kind respectively, where ξ = (1 − λ2)1/2. But as r → 0,

the Bessel function of second kind becomes undefined, therefore we must choose

c10 = 0 for bounded solution, thus (4.16) becomes

R2(r) = c9J0(ξr).

Hence, the nth mode propagation can be given as

ψ2n(r, z) = J0(ξnr)e
iλnz. (4.17)

On substituting the velocity potential (4.17) into (4.5) and (4.2), the eigen function

expansion form of longitudinal and radial displacements are found as

un(d, z) =
ν(1− ξ2

n)1/2ξnJ1(ξnd)eiλnz

[(1− ξ2
n)1/2 − β2]d

(4.18)

and

wn(d, z) = ξnJ1(ξnd)eiλnz.

The longitudinal displacement (4.18) is then used in (4.7) to get the characteristics

equation

K(ξ, d) = −Γν2(1− ξ2)ξJ1(ξd) + [(1− ξ2)− β2][(1− ξ2)2 − µ4]ξJ1(ξd)

+ [(1− ξ2)− β2]αJ0(ξd) = 0,

where µ4 = Γ(d2β2 − 1) and α = 12β2ρ/(ρsh
3k3).

Thus, the eigen expansion form of field potential in three duct region can be
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written as:

ψ1(r, z) = eiz +
∞∑
n=0

AnJ0(τnr)e
−iηnz, 0 ≤ r ≤ a, z ≤ 0, (4.19)

ψ2(r, z) =
∞∑
n=0

BnJ0(ξnr)e
iλnz, 0 ≤ r ≤ d, z ≥ 0, (4.20)

ψ3(r, z) =
∞∑
n=0

CnRn(r)e−isnz, a ≤ r ≤ b, z ≤ 0. (4.21)

In (4.19) - (4.21) the scattering amplitudes {An, Bn, Cn} are unknowns which can

be determined by using matching conditions of pressure and normal velocities into

(4.9) - (4.11). For this, we invoke the potential fields (4.19) and (4.20) into pressure

condition (4.9) to get,

1 +
∞∑
n=0

AnJ0(τnr) =
∞∑
n=0

BnJ0(ξnr). (4.22)

After multiplying (4.22) with J0(τmr)r and integrating the resultant with respect

to r, which leads to

∫ a

0

J0(τmr)rdr +
∞∑
n=0

An

∫ a

0

J0(τmr)J0(τnr)rdr =
∞∑
n=0

Bn

∫ a

0

J0(τmr)J0(ξnr)rdr.

(4.23)

On using the orthogonality relation which is derived in Chapter-3, i.e,

∫ a

0

Rm(r)Rn(r)rdr = δmnFn. (4.24)

On using (4.24) into (4.23), we find

Am = −δ0m +
1

Fm

∞∑
n=0

BnQmn, (4.25)

where

Qmn =

∫ a

0

J0(τmr)J0(ξnr)rdr.
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For τm 6= ξn , Qmn simplifies to

Qmn =
a {τmJ1(τma)J0(ξna)− ξmJ1(ξma)J0(τma)}

τ 2
m − ξ2

n

.

When τm = ξn (with m = n), it fellows

Qmm =
a2J2

0 (τma)

2
.

Similarly on using the scattered fields (4.20) and (4.21) into the pressure condition

(4.10), we have
∞∑
n=0

CnRn(r) =
∞∑
n=0

BnJ0(ξnr). (4.26)

On multiplying the above equation (4.26) by Rm(r)r and integrating with respect

to r, we found

∞∑
n=0

Cn

∫ b

a

Rm(r)Rn(r)rdr =
∞∑
n=0

Bn

∫ b

a

Rm(r)J0(ξnr)rdr.

To find the integral on the left-hand side the orthogonality relation which is derived

in previous chapter is used,

∫ b

a

Rm(r)Rn(r)rdr = δmnEm,

it is found that,

Cm =
1

Em

∞∑
n=0

BnPmn, (4.27)

where

Pmn =

∫ b

a

Rm(r)J0(ξnr)rdr,

which simplification yields,

Pmn =
1

ξ2
n − γ2

m

[
ξn

{
bJ1(bξn)

(
− J1(aγm)Y0(bγm) + J0(bγm)Y1(aγm)

)
+

2J1(aξn)

πγm

}
+ bJ0(bξn)γm

(
− J1(bγm)Y1(aγm) + J1(aγm)Y1(bγm)

)]
.
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Finally, we use (4.19) - (4.21) into (4.11) to get

∞∑
n=0

BnλnJ0(ξnr) =


1−

∞∑
n=0

AnηnJ0(τnr) 0 ≤ r ≤ a

−
∞∑
n=0

CnsnRn(r) a ≤ r ≤ b.

(4.28)

Multiplying (4.28) by
α

d
J0(ξmr)r and integrating the resultant from 0 ≤ r ≤ d,

we get

∞∑
n=0

Bnλn
α

d

∫ d

0

J0(ξnr)J0(ξmr)rdr =
α

d

∫ a

0

J0(ξmr)rdr−

∞∑
n=0

Anηn
α

d

∫ a

0

J0(ξmr)J0(τnr)rdr −
∞∑
n=0

snCn
α

d

∫ b

a

Rn(r)J0(ξmr)rdr. (4.29)

The orthogonality relation as derived by Lawrie Pullen [27] is

α

d

∫ d

0

J0(ξnr)J0(ξmr)rdr = δmnDn −
[

Γν2β2

(λ2
n − β2)(λ2

m − β2)
+ 2

− ξ2
m − ξ2

n

]
ξnJ1(ξnd)ξmJ1(ξmd), (4.30)

where Γ =
12

h2k2d2
, ξn are equivalent wavenumbers, and ξn = (1− δ2)1/2.

On using (4.30) into (4.29), after some rearrangements, we obtain

Bm =
ξmJ1(ξmd)

λmDm(λ2
m − β2)

E0 +
(2− ξ2

m)ξmJ1(ξmd)

λmDm

E1− ξmJ1(ξmd)

λmDm

E2

+
α

dλmDm

Q0m −
α

dλmDm

∞∑
n=0

AnηnQnm −
α

dλmDm

∞∑
n=0

CnsnPnm,

where

E0 = Γν2β2

∞∑
n=0

BnλnξnJ1(ξnd)

(λ2
n − β2)

, (4.31)

E1 =
∞∑
n=0

BnλnξnJ1(ξnd), (4.32)

E2 =
∞∑
n=0

Bnλnξ
3
nJ1(ξnd),
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are constants and

Qnm =

∫ a

0

J0(ξmr)J0(τmr)rdr

and

Pnm =

∫ b

a

Rn(r)J0(ξmr)rdr.

To determine the values of constants E0−E2, we use edge conditions. For clamped

connections we invoke the displacement (4.18) and (4.20) into (4.8) to get

∞∑
m=0

BmλmξmJ1(ξmd)

(λ2
m − β2)

= 0, (4.33)

∞∑
m=0

BmξmJ1(ξmd) = 0, (4.34)

∞∑
m=0

BmλmξmJ1(ξmd) = 0. (4.35)

By comparing (4.31) and (4.32) with (4.33) and (4.35), we found E0 = E1 = 0.

Bm = −ξmJ1(ξmd)

λmDm

E2+
α

dλmDm

Q0m−
α

dλmDm

∞∑
n=0

AnηnQnm−
α

dλmDm

∞∑
n=0

CnsnPnm.

(4.36)

To calculate E2, we multiply (4.36) with ξmJ1(ξmd) then taking summation over

m from 0 to ∞, we obtain Multiplying the above equation by and summing over

, we get

∞∑
m=0

BmξmJ1(ξmd) = −
∞∑
m=0

ξ2
mJ

2
1 (ξmd)

λmDm

E2

+
α

dλmDm

∞∑
m=0

ξmJ1(ξmd)

[
Q0m −

∞∑
n=0

AnηnQnm −
∞∑
n=0

CnsnPnm

]
.

On using (4.34), after simplification we get the expression for E2

E2 =
α

dλmDmS

∞∑
m=0

ξmJ1(ξmd)

{
Q0m −

∞∑
n=0

AnηnQnm −
∞∑
n=0

CnsnPnm

}
,
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where

S =
∞∑
m=0

ξ2
mJ

2
1 (ξmd)

λmDm

.

In this way the equations (425), (4.27) and (4.36) yield a system of equations

in which Am, Bm and Cm are unknowns. These are truncated upto m = n =

0, 1, 2...N terms and solved the equations simultaneously.

4.3 Energy Flux/Power

Here we determine the energy flux in different duct regions and then construct the

conserved power identity. To define the incident energy flux, we use incident field

ψinc = eiz into (3.63) which is discussed in chapter-3, we get

Incident energy flux = Re

[
i

∫ a

0

eiz(−ie−iz)rdr
]
,

εinc =
a2

2
.

Now we determinant, the reflection in energy in the central region 0 ≤ r ≤ a, we

write the reflected field as:

ψr =
∞∑
n=0

AnJ0(τnr)e
−iηnz. (4.37)

By substituting (4.37) into energy flux equation (3.63), we get

Reflected energy flux in region R1

= Re

[
i

∫ a

0

(
∞∑
n=0

AnJ0(τnr)e
−iηnz

)(
∞∑
m=0

AmJ0(τmr) (−iηm) e−iηmz

)∗
rdr

]
,

= −Re

[
∞∑
n=0

∞∑
m=0

AnA
∗
me
−i(ηn−η∗m)η∗m

∫ a

0

J0(τnr)J
∗
0 (τmr)rdr

]
.
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Note that as τn are roots of (3.19) which are real values implies J∗0 (τmr) = J0(τmr),

therefore

Reflected energy flux in region R1

= −Re

[
∞∑
n=0

∞∑
m=0

AnA
∗
me
−i(ηn−η∗m)η∗m

∫ a

0

J0(τnr)J0(τmr)rdr

]
.

On using orthogonality relation (3.30), we get

Reflected energy flux in region R1 = −Re

[
∞∑
n=0

∞∑
m=0

AnA
∗
me
−i(ηn−η∗m)η∗mFnδmn

]
,

= −Re

[
∞∑
n=0

| An |2 η∗ne−i(ηn−η
∗
n)Fn

]
.

Since ηn = (1− τn)1/2 is either real or imaginary, thus for real values

Reflected energy flux in region R1 = −Re

[
∞∑
n=0

| An |2 ηnFn

]
.

Now we determinant, the reflection in energy in region a ≤ r ≤ b, we write the

reflected field as:

ψr =
∞∑
n=0

CnR3n(r)e−isnz. (4.38)

On using (4.38) and (3.63), we get

Reflected energy flux in region R3

= Re

[
i

∫ b

a

(
∞∑
n=0

CnR3n(r)e−isnz

)(
∞∑
m=0

CmR3m(r) (−ism) e−ismz

)∗
rdr

]
,

= −Re

[
∞∑
n=0

∞∑
m=0

CnC
∗
me
−i(sn−s∗m)s∗m

∫ b

a

R3n(r)R∗3m(r)rdr

]
.
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Note that as sn are roots which are real values implies R∗3m(r) = R3m(r), therefore

Reflected energy flux in region R3

= −Re

[
∞∑
n=0

∞∑
m=0

CnC
∗
me
−i(sn−s∗m)s∗m

∫ b

a

R3n(r)R3m(r)rdr

]
.

On using orthogonality relation (3.49), we get

Reflected energy flux in region R3 = −Re

[
∞∑
n=0

∞∑
m=0

CnC
∗
me
−i(sn−s∗m)s∗mEnδmn

]
,

= −Re

[
∞∑
n=0

| Cn |2 s∗ne−i(sn−s
∗
n)En

]
.

Since sn = (1− γn)1/2 is either real or imaginary, thus for real values

Reflected energy flux in region R3 = −Re

[
∞∑
n=0

| Cn |2 snEn

]
.

Now we calculate the energy flux for region R2. For this we have the transmitted

field given by

ψtr =
∞∑
n=0

BnJ0(ξnr)e
iλnz. (4.39)

By substituting (4.39) into energy flux equation (3.63), we get

Transmitted energy flux in region R2

= Re

[
i

∫ b

0

(
∞∑
n=0

BnJ0(ξnr)e
iλnz

)(
∞∑
m=0

BmJ0(ξmr) (iλm) eiλmz

)∗
rdr

]
,

= Re

[
∞∑
n=0

∞∑
m=0

BnB
∗
me

i(λn−λ∗m)λ∗m

∫ b

0

J0(ξnr)J
∗
0 (ξmr)rdr

]
.

Note that as ξn are roots of (4.17) which are real values implies J∗0 (ξmr) = J0(ξmr),

therefore

= Re

[
∞∑
n=0

∞∑
m=0

BnB
∗
me

i(λn−λ∗m)λ∗m

∫ b

0

J0(ξnr)J0(ξmr)rdr

]
.
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On using orthogonality relation (4.30), we get

Tranmitted energy flux in region R2 =
d

α
Re

[
∞∑
n=0

∞∑
m=0

BnB
∗
me

i(λn−λ∗m)λ∗mDnδmn

]
,

=
d

α
Re

[
∞∑
n=0

| Bn |2 λ∗nei(λn−λ
∗
n)Dn

]
.

Since λn = (1− ξn)1/2 is either real or imaginary, thus for real values

Transmitted energy flux in region R2 =
d

α
Re

[
∞∑
n=0

| Bn |2 λnDn

]
.

From conversation of energy

Left hand energy flux = Right hand energy flux.

a2

2
− Re

[
∞∑
n=0

| An |2 ηnFn

]
− Re

[
∞∑
n=0

| Cn |2 snEn

]
=
d

α
Re

[
∞∑
n=0

| Bn |2 λnDn

]
.

(4.40)

To scale the incident power at unity we multiplying (4.40) by
2

a2
, after some

manipulations we get

1 = E1 + E2 + E3, (4.41)

which is conserved energy equation, where

E1 =
2

a2
Re

[
∞∑
n=0

| An |2 ηnFn

]
,

E2 =
2d

a2α
Re

[
∞∑
n=0

| Bn |2 λnDn

]
and

E3 =
2

a2
Re

[
∞∑
n=0

| Cn |2 snEn

]
.
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4.4 Numerical Solution

In this section the physical problem is solved numerically after truncation of (4.25) ,

(4.27) and (4.36) upto n = 0, 1, 2, ...N terms. Here the system is truncated upto N

terms. The reduced system contains, N + 1 algebraic equations which are solved

simultaneously to find the unknown coefficients (An, Bn, Cn), n = 0, 1, 2, ..., N

terms. The numerical computation are performed in MATHEMATICA using

built-in commands. The power distribution in duct regions is plotted against

the frequency.

While carrying the parametric investigation, the physical parameters are chosen

as; the speed of sound in air c = 343ms−1 , density of air ρ = 1.2043kgm−3 and

the dimensional ducts height are ā = 0.1 , b̄ = 0.15 and d̄ = 0.2. In addition, an

aluminium shell of thickness h = 0.002m and of density ρs = 2700kgm−3 is con-

sider. The value of poisson,s ratio and Young’s modulus are taken to be ν = 0.34

and E = 7.2× 1010Nm−2.

We reconstruct our matching conditions at matching interface to validate the

truncated solution. The real and imaginary part of non-dimensional pressures and

velocities at matching interface are shown in Figure 4.2-4.5.

From these figures, it can be seen that the pressure curves match exactly at match-

ing interface as considered in equation (4.9) and (4.10).

Likewise in Figure 4.6-4.7 the real and imaginary parts of velocities coincide at ap-

paratus whereas the real and imaginary parts of ψ2 becomes zero when b ≤ r ≤ d.

This is exactly that we considered in equation (4.11). In this way the matching

conditions confirm the accuracy of performed algebra as well as the truncated so-

lution.
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Figure 4.2: Real parts of pressures ψ1(r, 0) and ψ2(r, 0) plotted against r.
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Figure 4.3: Imaginary parts of pressures ψ1(r, 0) and ψ2(r, 0) plotted against r.
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Figure 4.4: Real parts of pressures ψ2(r, 0) and ψ3(r, 0) plotted against r.
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Figure 4.5: Imaginary parts of pressures ψ2(r, 0) and ψ3(r, 0) plotted against r.
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Figure 4.6: Real parts of velocities ψ1z(r, 0), ψ2z(r, 0) and ψ3z(r, 0) plotted
against r.
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Figure 4.7: Imaginary parts of velocities ψ1z(r, 0), ψ2z(r, 0) and ψ3z(r, 0) plotted
against r.
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Furthermore, the accuracy of truncated solution can be confirmed through energy

flux identity. The power components against frequency are plotted in Figures 4.8-

4.9 for circular regions of radii ā = 0.1m , b̄ = 0.15m and d̄ = 0.2m. The roots of

involving parameters remain invariant as discussed in the start of this section.

Note that in Figure 4.8 the step-discontinuity is assumed. For the dispersion of

energy flux, we plot the reflected and transmitted energy flux against frequency.

Moreover, the sum of the scattering power propagation in different regions is unity

which justifies the conserved power identity (4.41). In this way the confirmation

of matching conditions and conserved power identity validation the truncated so-

lution.

The physical behavior depicted in Figure 4.8, shows that the reflected power in

region R1 increases continuously in frequency regime 1Hz ≤ f ≤ 1050Hz. After

that, it goes on decreasing and start fluctuating to reaches its minimum for higher

frequencies. When the reflected power goes on decreasing then the transmitted

power goes on increasing. So that, the reflected and transmitted powers are con-

verse to each other.

In Figure 4.9 the step-discontinuity is removed by taking b = d, when an funda-

mental mode becomes propagating then both the reflected and transmitted powers

behave smoothly in frequency regime 1Hz ≤ f ≤ 1400Hz. At f ≤ 1400Hz, the

reflection of energy flux increases and transmission decreases.

The power components against frequency plotted in Figures 4.10-4.11 for circular

regions ā = 0.05m, b̄ = 0.1m and d̄ = 0.2m. In Figure 3.10 the step-discontinuity is

assumed. Furthermore in Figures 4.12−4.13 the dimensions are fixed as ā = 0.2m,

b̄ = 0.25m and d̄ = 0.35m.
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Figure 4.8: Scattered energy flux (εj) in regions Rj verses frequency for rigid
bounding walls with d̄ > b̄, where ā = 0.1m, b̄ = 0.15m, d̄ = 0.2m and N = 20.
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Figure 4.9: Scattered energy fiux (εj) in regions Rj verses frequency for rigid
bounding walls with b̄ = d̄, where ā = 0.1, b̄ = 0.15, d̄ = 0.15 and N = 20.
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Figure 4.10: Scattered energy flux (εj) in regions Rj verses frequency for rigid
bounding walls with d̄ > b̄, where ā = 0.05m, b̄ = 0.1m, d̄ = 0.2m and N = 20.
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Figure 4.11: Scattered energy flux (εj) in regions Rj verses frequency for rigid
bounding walls with d̄ = b̄, where ā = 0.05m, b̄ = 0.1m, d̄ = 0.1m and N = 20.
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Figure 4.12: Scattered energy flux (εj) in regions Rj verses frequency for rigid
bounding walls d̄ > b̄, where ā = 0.2m, b̄ = 0.25m, d̄ = 0.35m and N = 20.
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Figure 4.13: Scattered energy flux (εj) in regions Rj verses frequency for rigid
bounding walls with d̄ = b̄, where ā = 0.2m, b̄ = 0.25m, d̄ = 0.25m and N = 20.



Chapter 5

Summary and Conclusions

In this thesis, the reflection and transmission of acoustics waves in the bifurcated

cylindrical waveguides are discussed. Chapter -3 includes a bifurcated cylindri-

cal waveguide bounded by acoustically rigid boundaries along with circular step-

discontinuity at interface. Whereas, in Chapter -4 one duct is considered to be an

elastic shell instead of rigid duct. The inside of waveguides contains compressible

fluid. The incident field is assumed from the central region of the waveguide and

its scattering is analyzed. The Mode-Matching solution is developed to discussed

the acoustics scattering in the waveguide. The eigenvalues of respective regions

and the corresponding eigenfunctions are sorted first to write the eigen expansion

form of field potentials. These field potentials involve unknown amplitudes which

are found through the matching conditions. The matching conditions together

with appropriate orthogonal characteristics help to recaust the differential system

into a system of infinite linear algebraic equations. This system is truncated and

solved through inversion. The scattering energy flux in each duct is calculated an-

alytically and then is plotted numerically by using the truncated form of solution.

It is seen that the truncated form of solution satisfies the conserve power identity

accurately. Moreover, it reconstructs the matching conditions at interface. In this

way the Mode-Matching solution in truncated form is validated physically and

mathematically.

60
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From the mathematical and physical observations of both the problems, the fol-

lowing points are noticeable:

• The eigenvalues and eigenfunctions depend upon the bounding wall condi-

tions of the physical problem. Chapter-3, which contains all rigid boundaries

are real and periodic. The corresponding eigenfunctions are orthogonal and

undergoes in Strurm-Liouville category. Chapter-4, for elastic shell bound-

aries the eigenvalues are real, imaginary or complex. The corresponding

eigenfunctions are non-orthogonal and undergoes in non-Strurm-Liouville

category. Nevertheless, the generalized orthogonality characteristics lead to

accurate solution of the problem.

• The power reflection and power transmission depend upon the bounding

conditions and structural discontinuities: Chapter-3 the reflection is greater

than Chapter-4, whereas the power is also along the boundaries transferring.

The involvement of structural discontinuities increases the reflected power.

Since more reflected power in discontinuous case than planar in both Chapter-

3 and Chapter-4 is observed.
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